LaTex Math Support
The content in this page is copied from the KaTeX Official Supported Functions page. I have only made some changes to fit the migration with the Hugo system.
Accents
$a'$ | a' | $\tilde{a}$ | \tilde{a} | $\mathring{g}$ | \mathring{g} |
$a’'$ | a'' | $\widetilde{ac}$ | \widetilde{ac} | $\overgroup{AB}$ | \overgroup{AB} |
$a^{\prime}$ | a^{\prime} | $\utilde{AB}$ | \utilde{AB} | $\undergroup{AB}$ | \undergroup{AB} |
$\acute{a}$ | \acute{a} | $\vec{F}$ | \vec{F} | $\Overrightarrow{AB}$ | \Overrightarrow{AB} |
$\bar{y}$ | \bar{y} | $\overleftarrow{AB}$ | \overleftarrow{AB} | $\overrightarrow{AB}$ | \overrightarrow{AB} |
$\breve{a}$ | \breve{a} | $\underleftarrow{AB}$ | \underleftarrow{AB} | $\underrightarrow{AB}$ | \underrightarrow{AB} |
$\check{a}$ | \check{a} | $\overleftharpoon{ac}$ | \overleftharpoon{ac} | $\overrightharpoon{ac}$ | \overrightharpoon{ac} |
$\dot{a}$ | \dot{a} | $\overleftrightarrow{AB}$ | \overleftrightarrow{AB} | $\overbrace{AB}$ | \overbrace{AB} |
$\ddot{a}$ | \ddot{a} | $\underleftrightarrow{AB}$ | \underleftrightarrow{AB} | $\underbrace{AB}$ | \underbrace{AB} |
$\grave{a}$ | \grave{a} | $\overline{AB}$ | \overline{AB} | $\overlinesegment{AB}$ | \overlinesegment{AB} |
$\hat{\theta}$ | \hat{\theta} | $\underline{AB}$ | \underline{AB} | $\underlinesegment{AB}$ | \underlinesegment{AB} |
$\widehat{ac}$ | \widehat{ac} | $\widecheck{ac}$ | \widecheck{ac} | $\underbar{X}$ | \underbar{X} |
Accent functions inside \\text{...}
$\text{'{a}}$ | \'{a} | $\text{~{a}}$ | \~{a} | $\text{.{a}}$ | \.{a} | $\text{\H{a}}$ | \H{a} |
$\text{`{a}}$ | \`{a} | $\text{={a}}$ | \={a} | $\text{"{a}}$ | \"{a} | $\text{\v{a}}$ | \v{a} |
$\text{\^{a}}$ | \\^{a} | $\text{\u{a}}$ | \u{a} | $\text{\r{a}}$ | \r{a} |
- See also letters and unicode.
Delimiters
Symbol | Syntax 1 | Syntax 2 | Symbol | Syntax 1 | Syntax 2 |
---|---|---|---|---|---|
$(~)$ | ( ) | \lparen \rparen | $⌈~⌉$ | ⌈ ⌉ | \lceil \rceil |
$[~]$ | [ ] | \lbrack \rbrack | $⌊~⌋$ | ⌊ ⌋ | \lfloor \rfloor |
$\{ \}$ | \\{ \\} | \lbrace \rbrace | $⎰⎱$ | ⎰ ⎱ | \lmoustache \rmoustache |
$⟨~⟩$ | ⟨ ⟩ | \langle \rangle | $⟮~⟯$ | ⟮ ⟯ | \lgroup \rgroup |
$┌ ┐$ | ┌ ┐ | \ulcorner \urcorner | $└ ┘$ | └ ┘ | \llcorner \lrcorner |
$\vert$ | | | \vert | $\Vert$ | ∥ | \Vert |
$⟦~⟧$ | ⟦ ⟧ | \llbracket \rrbracket | $\lBrace~\rBrace$ | \lBrace \rBrace | |
$\lvert~\rvert$ | \lvert \rvert | $\lVert~\rVert$ | \lVert \rVert | ||
$\lang~\rang$ | \lang \rang | $\lt~\gt$ | \lt \gt | ||
$\backslash$ | \backslash | ||||
$\downarrow$ | \downarrow | $\Downarrow$ | \Downarrow | ||
$\uparrow$ | \uparrow | $\Uparrow$ | \Uparrow | ||
$\updownarrow$ | \updownarrow | $\Updownarrow$ | \Updownarrow |
Delimiter Sizing
- $\left(\LARGE{AB}\right)$
\left(\LARGE{AB}\right)
- $( \big( \Big( \bigg( \Bigg($
( \big( \Big( \bigg( \Bigg(
\left | \big | \bigl | \bigm | \bigr |
\middle | \Big | \Bigl | \Bigm | \Bigr |
\right | \bigg | \biggl | \biggm | \biggr |
\Bigg | \Biggl | \Biggm | \Biggr |
Environments
$\begin{matrix} a & b \\ c & d \end{matrix}$ |
| $\begin{array}{cc}a & b \\ c & d \end{array}$ |
|
$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ |
| $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ |
|
$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ |
| $\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}$ |
|
$\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}$ |
| $\def\arraystretch{1.5}\begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array}$ |
|
$x = \begin{cases} a & \text{if } b \\ c & \text{if } d \end{cases}$ |
| $\begin{rcases} a &\text{if } b \\ c &\text{if } d \end{rcases}⇒...$ |
|
$\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}$ |
| $$\sum_{\begin{subarray}{l} i\in\Lambda\\ 0<j<n\end{subarray}}$$ |
|
- The auto-render extension will render the following environments even if they are not inside math delimiters such as
$...$
. They are display-mode only.
\begin{equation}\begin{split}a &=b+c \\ &=e+f \end{split}\end{equation} |
| \begin{align} a&=b+c \\ d+e&=f \end{align} |
|
\begin{gather} a=b \\ e=b+c \end{gather} |
| \begin{alignat}{2} 10&x+&3&y=2 \\ 3&x+&13&y=4 \end{alignat} |
|
\begin{CD} A @>a>> B \\ @VbVV @AAcA \\ C @= D \end{CD} |
|
Other KaTeX Environments
Environments | How they differ from those shown above |
---|---|
darray , dcases , drcases | apply displaystyle |
matrix* , pmatrix* , bmatrix* , Bmatrix* , vmatrix* , Vmatrix* | take an optional argument to set column alignment, as in \begin{matrix*}[r] |
equation* , gather* , align* , alignat* | have no automatic numbering. Alternatively, you can use \nonumber or \notag to omit the numbering for a specific row of the equation. |
gathered , aligned , alignedat | 1. do not need to be in display mode. 2. have no automatic numbering. 3. must be inside math delimiters in order to be rendered by the auto-render extension. |
- Acceptable line separators include:
\\\\
,\cr
,\\\\[distance]
, and\cr[distance]
. Distance can be written with any of the KaTeX units. - The
{array}
environment supports|
and:
vertical separators. - The
{array}
environment does not yet support\cline
or\multicolumn
. \tag
can be applied to individual rows of top-level environments (align
,align*
,alignat
,alignat*
,gather
,gather*
).
Letters and Unicode
Greek Letters
- Direct Input: $Α Β Γ Δ Ε Ζ Η Θ Ι \allowbreak Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω$ $\allowbreak α β γ δ ϵ ζ η θ ι κ λ μ ν ξ o π \allowbreak ρ σ τ υ ϕ χ ψ ω ε ϑ ϖ ϱ ς φ ϝ$
$\Alpha$ \Alpha | $\Beta$ \Beta | $\Gamma$ \Gamma | $\Delta$ \Delta |
$\Epsilon$ \Epsilon | $\Zeta$ \Zeta | $\Eta$ \Eta | $\Theta$ \Theta |
$\Iota$ \Iota | $\Kappa$ \Kappa | $\Lambda$ \Lambda | $\Mu$ \Mu |
$\Nu$ \Nu | $\Xi$ \Xi | $\Omicron$ \Omicron | $\Pi$ \Pi |
$\Rho$ \Rho | $\Sigma$ \Sigma | $\Tau$ \Tau | $\Upsilon$ \Upsilon |
$\Phi$ \Phi | $\Chi$ \Chi | $\Psi$ \Psi | $\Omega$ \Omega |
$\varGamma$ \varGamma | $\varDelta$ \varDelta | $\varTheta$ \varTheta | $\varLambda$ \varLambda |
$\varXi$ \varXi | $\varPi$ \varPi | $\varSigma$ \varSigma | $\varUpsilon$ \varUpsilon |
$\varPhi$ \varPhi | $\varPsi$ \varPsi | $\varOmega$ \varOmega | |
$\alpha$ \alpha | $\beta$ \beta | $\gamma$ \gamma | $\delta$ \delta |
$\epsilon$ \epsilon | $\zeta$ \zeta | $\eta$ \eta | $\theta$ \theta |
$\iota$ \iota | $\kappa$ \kappa | $\lambda$ \lambda | $\mu$ \mu |
$\nu$ \nu | $\xi$ \xi | $\omicron$ \omicron | $\pi$ \pi |
$\rho$ \rho | $\sigma$ \sigma | $\tau$ \tau | $\upsilon$ \upsilon |
$\phi$ \phi | $\chi$ \chi | $\psi$ \psi | $\omega$ \omega |
$\varepsilon$ \varepsilon | $\varkappa$ \varkappa | $\vartheta$ \vartheta | $\thetasym$ \thetasym |
$\varpi$ \varpi | $\varrho$ \varrho | $\varsigma$ \varsigma | $\varphi$ \varphi |
$\digamma $ \digamma |
Other Letters
$\imath$ \imath | $\nabla$ \nabla | $\Im$ \Im | $\Reals$ \Reals | $\text{\OE}$ \text{\OE} |
$\jmath$ \jmath | $\partial$ \partial | $\image$ \image | $\wp$ \wp | $\text{\o}$ \text{\o} |
$\aleph$ \aleph | $\Game$ \Game | $\Bbbk$ \Bbbk | $\weierp$ \weierp | $\text{\O}$ \text{\O} |
$\alef$ \alef | $\Finv$ \Finv | $\N$ \N | $\Z$ \Z | $\text{\ss}$ \text{\ss} |
$\alefsym$ \alefsym | $\cnums$ \cnums | $\natnums$ \natnums | $\text{\aa}$ \text{\aa} | $\text{\i}$ \text{\i} |
$\beth$ \beth | $\Complex$ \Complex | $\R$ \R | $\text{\AA}$ \text{\AA} | $\text{\j}$ \text{\j} |
$\gimel$ \gimel | $\ell$ \ell | $\Re$ \Re | $\text{\ae}$ \text{\ae} | |
$\daleth$ \daleth | $\hbar$ \hbar | $\real$ \real | $\text{\AE}$ \text{\AE} | |
$\eth$ \eth | $\hslash$ \hslash | $\reals$ \reals | $\text{\oe}$ \text{\oe} |
Direct Input: $∂ ∇ ℑ Ⅎ ℵ ℶ ℷ ℸ ⅁ ℏ ð − ∗$ ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖÙÚÛÜÝÞßàáâãäåçèéêëìíîïðñòóôöùúûüýþÿ ₊₋₌₍₎₀₁₂₃₄₅₆₇₈₉ₐₑₕᵢⱼₖₗₘₙₒₚᵣₛₜᵤᵥₓᵦᵧᵨᵩᵪ⁺⁻⁼⁽⁾⁰¹²³⁴⁵⁶⁷⁸⁹ᵃᵇᶜᵈᵉᵍʰⁱʲᵏˡᵐⁿᵒᵖʳˢᵗᵘʷˣʸᶻᵛᵝᵞᵟᵠᵡ
Math-mode Unicode (sub|super)script characters will render as if you had written regular characters in a subscript or superscript. For instance,
A²⁺³
will render the same asA^{2+3}
.
Unicode Mathematical Alphanumeric Symbols
Item | Range | Item | Range |
---|---|---|---|
Bold | $\text{𝐀-𝐙 𝐚-𝐳 𝟎-𝟗}$ | Double-struck | $\text{𝔸-}ℤ\ 𝕜$ |
Italic | $\text{𝐴-𝑍 𝑎-𝑧}$ | Sans serif | $\text{𝖠-𝖹 𝖺-𝗓 𝟢-𝟫}$ |
Bold Italic | $\text{𝑨-𝒁 𝒂-𝒛}$ | Sans serif bold | $\text{𝗔-𝗭 𝗮-𝘇 𝟬-𝟵}$ |
Script | $\text{𝒜-𝒵}$ | Sans serif italic | $\text{𝘈-𝘡 𝘢-𝘻}$ |
Fractur | $\text{𝔄-ℨ}\text{ 𝔞-𝔷}$ | Monospace | $\text{𝙰-𝚉 𝚊-𝚣 𝟶-𝟿}$ |
Bold Fractur | $\text{𝕬-𝖅}\text{𝖆-𝖟}$ |
Unicode
- The letters listed above will render properly in any KaTeX rendering mode.
- In addition, Armenian, Brahmic, Georgian, Chinese, Japanese, and Korean glyphs are always accepted in text mode. However, these glyphs will be rendered from system fonts (not KaTeX-supplied fonts) so their typography may clash.
- You can provide rules for CSS classes
.latin_fallback
,.cyrillic_fallback
,.brahmic_fallback
,.georgian_fallback
,.cjk_fallback
, and.hangul_fallback
to provide fallback fonts for these languages. - Use of these glyphs may cause small vertical alignment issues: KaTeX has detailed metrics for listed symbols and most Latin, Greek, and Cyrillic letters, but other accepted glyphs are treated as if they are each as tall as the letter M in the current KaTeX font.
- If the KaTeX rendering mode is set to
strict: false
orstrict: "warn"
(default), then KaTeX will accept all Unicode letters in both text and math mode. - All unrecognized characters will be treated as if they appeared in text mode, and are subject to the same issues of using system fonts and possibly using incorrect vertical alignment.
- For Persian composite characters, a user-supplied plug-in is under development.
- Any character can be written with the
\char
function and the Unicode code in hex. For example\char"263a
will render as $\char"263a$.
Layout
Annotation
$\cancel{5}$ | \cancel{5} | $\overbrace{a+b+c}^{\text{note}}$ | \overbrace{a+b+c}^{\text{note}} |
$\bcancel{5}$ | \bcancel{5} | $\underbrace{a+b+c}_{\text{note}}$ | \underbrace{a+b+c}_{\text{note}} |
$\xcancel{ABC}$ | \xcancel{ABC} | $\not =$ | \not = |
$\sout{abc}$ | \sout{abc} | $\boxed{\pi=\frac c d}$ | \boxed{\pi=\frac c d} |
$a_{\angl n}$ | $a_{\angl n} | $a_\angln$ | a_\angln |
$\phase{-78^\circ}$ | \phase{-78^\circ} |
Tags
\tag{hi} x+y^{2x}
$$\tag{hi} x+y^{2x}$$ |
\tag*{hi} x+y^{2x}
$$\tag*{hi} x+y^{2x}$$ |
Line Breaks
- KaTeX 0.10.0+ will insert automatic line breaks in inline math after relations or binary operators such as “=” or “+”. These can be suppressed by
\nobreak
or by placing math inside a pair of braces, as in{F=ma}
.\allowbreak
will allow automatic line breaks at locations other than relations or operators. - Hard line breaks are
\\\\
and\newline
. - In display math, KaTeX does not insert automatic line breaks. It ignores display math hard line breaks when rendering option
strict: true
.
Vertical Layout
$x_n$ | x_n | $\stackrel{!}{=}$ | \stackrel{!}{=} | $a \atop b$ | a \atop b |
$e^x$ | e^x | $\overset{!}{=}$ | \overset{!}{=} | $a\raisebox{0.25em}{$b$}c$ | a\raisebox{0.25em}{$b$}c |
$_u^o$ | _u^o | $\underset{!}{=}$ | \underset{!}{=} | $a+\left(\vcenter{\frac{\frac a b}c}\right)$ | a+\left(\vcenter{\hbox{$\frac{\frac a b}c$}}\right) |
$$\sum_{\substack{0<i<m\\0<j<n}}$$ | \sum_{\substack{0<i<m\\\\0<j<n}} |
\raisebox
and\hbox
put their argument into text mode. To raise math, nest$...$
delimiters inside the argument as shown above.\vcenter
can be written without an\hbox
if thestrict
rendering option is false. In that case, omit the nested$...$
delimiters.
Overlap and Spacing
${=}\mathllap{/\,}$ | {=}\mathllap{/\,} | $\left(x^{\smash{2}}\right)$ | \left(x^{\smash{2}}\right) |
$\mathrlap{\,/}{=}$ | \mathrlap{\,/}{=} | $\sqrt{\smash[b]{y}}$ | \sqrt{\smash[b]{y}} |
$\displaystyle\sum_{\mathclap{1\le i\le j\le n}} x_{ij}$ | `\sum_{\mathclap{1\le i\le j\le n}} x_{ij}` |
- KaTeX also supports
\llap
,\rlap
, and\clap
, but they will take only text, not math, as arguments.
Spacing
Function | Produces | Function | Produces |
---|---|---|---|
\, | ³∕₁₈ em space | \kern{distance} | space, width = distance |
\thinspace | ³∕₁₈ em space | \mkern{distance} | space, width = distance |
\> | ⁴∕₁₈ em space | \mskip{distance} | space, width = distance |
\: | ⁴∕₁₈ em space | \hskip{distance} | space, width = distance |
\medspace | ⁴∕₁₈ em space | \hspace{distance} | space, width = distance |
\; | ⁵∕₁₈ em space | \hspace*{distance} | space, width = distance |
\thickspace | ⁵∕₁₈ em space | \phantom{content} | space the width and height of content |
\enspace | ½ em space | \hphantom{content} | space the width of content |
\quad | 1 em space | \vphantom{content} | a strut the height of content |
\qquad | 2 em space | \! | – ³∕₁₈ em space |
~ | non-breaking space | \negthinspace | – ³∕₁₈ em space |
\<space> | space | \negmedspace | – ⁴∕₁₈ em space |
\nobreakspace | non-breaking space | \negthickspace | – ⁵∕₁₈ em space |
\space | space | \mathstrut | \vphantom{(} |
Notes
distance
will accept any of the KaTeX units.\kern
,\mkern
,\mskip
, and\hspace
accept unbraced distances, as in:\kern1em
.\mkern
and\mskip
will not work in text mode and both will write a console warning for any unit exceptmu
.
Logic and Set Theory
$\gdef\VERT{|}$
$\forall$ \forall | $\complement$ \complement | $\therefore$ \therefore | $\emptyset$ \emptyset |
$\exists$ \exists | $\subset$ \subset | $\because$ \because | $\empty$ \empty |
$\exist$ \exist | $\supset$ \supset | $\mapsto$ \mapsto | $\varnothing$ \varnothing |
$\nexists$ \nexists | $\mid$ \mid | $\to$ \to | $\implies$ \implies |
$\in$ \in | $\land$ \land | $\gets$ \gets | $\impliedby$ \impliedby |
$\isin$ \isin | $\lor$ \lor | $\leftrightarrow$ \leftrightarrow | $\iff$ \iff |
$\notin$ \notin | $\ni$ \ni | $\notni$ \notni | $\neg$ \neg or \lnot |
$\Set{ x \VERT x<\frac 1 2 }$\Set{ x | x<\frac 1 2 } | $\set{x\VERT x<5}$\set{x|x<5} |
- Direct Input: $∀ ∴ ∁ ∵ ∃ ∣ ∈ ∉ ∋ ⊂ ⊃ ∧ ∨ ↦ → ← ↔ ¬$ ℂ ℍ ℕ ℙ ℚ ℝ
Macros
$\def\foo{x^2} \foo + \foo$ | \def\foo{x^2} \foo + \foo |
$\gdef\foo#1{#1^2} \foo{y} + \foo{y}$ | \gdef\foo#1{#1^2} \foo{y} + \foo{y} |
\edef\macroname#1#2…{definition to be expanded} | |
\xdef\macroname#1#2…{definition to be expanded} | |
\let\foo=\bar | |
\futurelet\foo\bar x | |
\global\def\macroname#1#2…{definition} | |
\newcommand\macroname[numargs]{definition} | |
\renewcommand\macroname[numargs]{definition} | |
\providecommand\macroname[numargs]{definition} |
- Macros can also be defined in the KaTeX rendering options.
- Macros accept up to nine arguments: #1, #2, etc.
- Macros defined by
\gdef
,\xdef
,\global\def
,\global\edef
,\global\let
, and\global\futurelet
will persist between math expressions. (Exception: macro persistence may be disabled. There are legitimate security reasons for that.) - KaTeX has no
\par
, so all macros are long by default and\long
will be ignored. - Available functions include:
\char
\mathchoice
\TextOrMath
\@ifstar
\@ifnextchar
\@firstoftwo
\@secondoftwo
\relax
\expandafter
\noexpand
@
is a valid character for commands, as if\makeatletter
were in effect.
Operators
Big Operators
$\sum$ \sum | $\prod$ \prod | $\bigotimes$ \bigotimes | $\bigvee$ \bigvee |
$\int$ \int | $\coprod$ \coprod | $\bigoplus$ \bigoplus | $\bigwedge$ \bigwedge |
$\iint$ \iint | $\intop$ \intop | $\bigodot$ \bigodot | $\bigcap$ \bigcap |
$\iiint$ \iiint | $\smallint$ \smallint | $\biguplus$ \biguplus | $\bigcup$ \bigcup |
$\oint$ \oint | $\oiint$ \oiint | $\oiiint$ \oiiint | $\bigsqcup$ \bigsqcup |
- Direct Input: $∫ ∬ ∭ ∮ ∏ ∐ ∑ ⋀ ⋁ ⋂ ⋃ ⨀ ⨁ ⨂ ⨄ ⨆$ ∯ ∰
Binary Operators
$+$ + | $\cdot$ \cdot | $\gtrdot$ \gtrdot | $x \pmod a$ x \pmod a |
$-$ - | $\cdotp$ \cdotp | $\intercal$ \intercal | $x \pod a$ x \pod a |
$/$ / | $\centerdot$ \centerdot | $\land$ \land | $\rhd$ \rhd |
$*$ * | $\circ$ \circ | $\leftthreetimes$ \leftthreetimes | $\rightthreetimes$ \rightthreetimes |
$\amalg$ \amalg | $\circledast$ \circledast | $\ldotp$ \ldotp | $\rtimes$ \rtimes |
$\And$ \And | $\circledcirc$ \circledcirc | $\lor$ \lor | $\setminus$ \setminus |
$\ast$ \ast | $\circleddash$ \circleddash | $\lessdot$ \lessdot | $\smallsetminus$ \smallsetminus |
$\barwedge$ \barwedge | $\Cup$ \Cup | $\lhd$ \lhd | $\sqcap$ \sqcap |
$\bigcirc$ \bigcirc | $\cup$ \cup | $\ltimes$ \ltimes | $\sqcup$ \sqcup |
$\bmod$ \bmod | $\curlyvee$ \curlyvee | $x \mod a$ x\mod a | $\times$ \times |
$\boxdot$ \boxdot | $\curlywedge$ \curlywedge | $\mp$ \mp | $\unlhd$ \unlhd |
$\boxminus$ \boxminus | $\div$ \div | $\odot$ \odot | $\unrhd$ \unrhd |
$\boxplus$ \boxplus | $\divideontimes$ \divideontimes | $\ominus$ \ominus | $\uplus$ \uplus |
$\boxtimes$ \boxtimes | $\dotplus$ \dotplus | $\oplus$ \oplus | $\vee$ \vee |
$\bullet$ \bullet | $\doublebarwedge$ \doublebarwedge | $\otimes$ \otimes | $\veebar$ \veebar |
$\Cap$ \Cap | $\doublecap$ \doublecap | $\oslash$ \oslash | $\wedge$ \wedge |
$\cap$ \cap | $\doublecup$ \doublecup | $\pm$ \pm or \plusmn | $\wr$ \wr |
- Direct Input: $+ - / * ⋅ ∘ ∙ ± × ÷ ∓ ∔ ∧ ∨ ∩ ∪ ≀ ⊎ ⊓ ⊔ ⊕ ⊖ ⊗ ⊘ ⊙ ⊚ ⊛ ⊝ ◯ ∖ {}$
Fractions and Binomials
$\frac{a}{b}$ \frac{a}{b} | $\tfrac{a}{b}$ \tfrac{a}{b} | $\genfrac ( ] {2pt}{1}a{a+1}$ \genfrac ( ] {2pt}{1}a{a+1} |
${a \over b}$ {a \over b} | $\dfrac{a}{b}$ \dfrac{a}{b} | ${a \above{2pt} b+1}$ {a \above{2pt} b+1} |
$a/b$ a/b | $\cfrac{a}{1 + \cfrac{1}{b}}$ \cfrac{a}{1 + \cfrac{1}{b}} |
$\binom{n}{k}$ \binom{n}{k} | $\dbinom{n}{k}$ \dbinom{n}{k} | ${n\brace k}$ {n\brace k} |
${n \choose k}$ {n \choose k} | $\tbinom{n}{k}$ \tbinom{n}{k} | ${n\brack k}$ {n\brack k} |
Math Operators
$\arcsin$ \arcsin | $\cosec$ \cosec | $\deg$ \deg | $\sec$ \sec |
$\arccos$ \arccos | $\cosh$ \cosh | $\dim$ \dim | $\sin$ \sin |
$\arctan$ \arctan | $\cot$ \cot | $\exp$ \exp | $\sinh$ \sinh |
$\arctg$ \arctg | $\cotg$ \cotg | $\hom$ \hom | $\sh$ \sh |
$\arcctg$ \arcctg | $\coth$ \coth | $\ker$ \ker | $\tan$ \tan |
$\arg$ \arg | $\csc$ \csc | $\lg$ \lg | $\tanh$ \tanh |
$\ch$ \ch | $\ctg$ \ctg | $\ln$ \ln | $\tg$ \tg |
$\cos$ \cos | $\cth$ \cth | $\log$ \log | $\th$ \th |
$\operatorname{f}$ \operatorname{f} | |||
$\argmax$ \argmax | $\injlim$ \injlim | $\min$ \min | $\varinjlim$ \varinjlim |
$\argmin$ \argmin | $\lim$ \lim | $\plim$ \plim | $\varliminf$ \varliminf |
$\det$ \det | $\liminf$ \liminf | $\Pr$ \Pr | $\varlimsup$ \varlimsup |
$\gcd$ \gcd | $\limsup$ \limsup | $\projlim$ \projlim | $\varprojlim$ \varprojlim |
$\inf$ \inf | $\max$ \max | $\sup$ \sup | |
$\operatorname*{f}$ \operatorname*{f} | $\operatornamewithlimits{f}$ \operatornamewithlimits{f} |
- Functions in the bottom six rows of this table can take
\limits
.
\sqrt
- $\sqrt{x}$
\sqrt{x}
- $\sqrt[3]{x}$
\sqrt[3]{x}
Relations
- $\stackrel{!}{=}$
\stackrel{!}{=}
$=$ = | $\doteqdot$ \doteqdot | $\lessapprox$ \lessapprox | $\smile$ \smile |
$<$ < | $\eqcirc$ \eqcirc | $\lesseqgtr$ \lesseqgtr | $\sqsubset$ \sqsubset |
$>$ > | $\eqcolon$ \eqcolon or \minuscolon | $\lesseqqgtr$ \lesseqqgtr | $\sqsubseteq$ \sqsubseteq |
$:$ : | $\Eqcolon$ \Eqcolon or \minuscoloncolon | $\lessgtr$ \lessgtr | $\sqsupset$ \sqsupset |
$\approx$ \approx | $\eqqcolon$ \eqqcolon or \equalscolon | $\lesssim$ \lesssim | $\sqsupseteq$ \sqsupseteq |
$\approxcolon$ \approxcolon | $\Eqqcolon$ \Eqqcolon or \equalscoloncolon | $\ll$ \ll | $\Subset$ \Subset |
$\approxcoloncolon$ \approxcoloncolon | $\eqsim$ \eqsim | $\lll$ \lll | $\subset$ \subset or \sub |
$\approxeq$ \approxeq | $\eqslantgtr$ \eqslantgtr | $\llless$ \llless | $\subseteq$ \subseteq or \sube |
$\asymp$ \asymp | $\eqslantless$ \eqslantless | $\lt$ \lt | $\subseteqq$ \subseteqq |
$\backepsilon$ \backepsilon | $\equiv$ \equiv | $\mid$ \mid | $\succ$ \succ |
$\backsim$ \backsim | $\fallingdotseq$ \fallingdotseq | $\models$ \models | $\succapprox$ \succapprox |
$\backsimeq$ \backsimeq | $\frown$ \frown | $\multimap$ \multimap | $\succcurlyeq$ \succcurlyeq |
$\between$ \between | $\ge$ \ge | $\origof$ \origof | $\succeq$ \succeq |
$\bowtie$ \bowtie | $\geq$ \geq | $\owns$ \owns | $\succsim$ \succsim |
$\bumpeq$ \bumpeq | $\geqq$ \geqq | $\parallel$ \parallel | $\Supset$ \Supset |
$\Bumpeq$ \Bumpeq | $\geqslant$ \geqslant | $\perp$ \perp | $\supset$ \supset |
$\circeq$ \circeq | $\gg$ \gg | $\pitchfork$ \pitchfork | $\supseteq$ \supseteq or \supe |
$\colonapprox$ \colonapprox | $\ggg$ \ggg | $\prec$ \prec | $\supseteqq$ \supseteqq |
$\Colonapprox$ \Colonapprox or \coloncolonapprox | $\gggtr$ \gggtr | $\precapprox$ \precapprox | $\thickapprox$ \thickapprox |
$\coloneq$ \coloneq or \colonminus | $\gt$ \gt | $\preccurlyeq$ \preccurlyeq | $\thicksim$ \thicksim |
$\Coloneq$ \Coloneq or \coloncolonminus | $\gtrapprox$ \gtrapprox | $\preceq$ \preceq | $\trianglelefteq$ \trianglelefteq |
$\coloneqq$ \coloneqq or \colonequals | $\gtreqless$ \gtreqless | $\precsim$ \precsim | $\triangleq$ \triangleq |
$\Coloneqq$ \Coloneqq or \coloncolonequals | $\gtreqqless$ \gtreqqless | $\propto$ \propto | $\trianglerighteq$ \trianglerighteq |
$\colonsim$ \colonsim | $\gtrless$ \gtrless | $\risingdotseq$ \risingdotseq | $\varpropto$ \varpropto |
$\Colonsim$ \Colonsim or \coloncolonsim | $\gtrsim$ \gtrsim | $\shortmid$ \shortmid | $\vartriangle$ \vartriangle |
$\cong$ \cong | $\imageof$ \imageof | $\shortparallel$ \shortparallel | $\vartriangleleft$ \vartriangleleft |
$\curlyeqprec$ \curlyeqprec | $\in$ \in or \isin | $\sim$ \sim | $\vartriangleright$ \vartriangleright |
$\curlyeqsucc$ \curlyeqsucc | $\Join$ \Join | $\simcolon$ \simcolon | $\vcentcolon$ \vcentcolon or \ratio |
$\dashv$ \dashv | $\le$ \le | $\simcoloncolon$ \simcoloncolon | $\vdash$ \vdash |
$\dblcolon$ \dblcolon or\coloncolon | $\leq$ \leq | $\simeq$ \simeq | $\vDash$ \vDash |
$\doteq$ \doteq | $\leqq$ \leqq | $\smallfrown$ \smallfrown | $\Vdash$ \Vdash |
$\Doteq$ \Doteq | $\leqslant$ \leqslant | $\smallsmile$ \smallsmile | $\Vvdash$ \Vvdash |
- Direct Input: $= < > : ∈ ∋ ∝ ∼ ∽ ≂ ≃ ≅ ≈ ≊ ≍ ≎ ≏ ≐ ≑ ≒ ≓ ≖ ≗ ≜ ≡ ≤ ≥ ≦ ≧ ≫ ≬ ≳ ≷ ≺ ≻ ≼ ≽ ≾ ≿ ⊂ ⊃ ⊆ ⊇ ⊏ ⊐ ⊑ ⊒ ⊢ ⊣ ⊩ ⊪ ⊸ ⋈ ⋍ ⋐ ⋑ ⋔ ⋙ ⋛ ⋞ ⋟ ⌢ ⌣ ⩾ ⪆ ⪌ ⪕ ⪖ ⪯ ⪰ ⪷ ⪸ ⫅ ⫆ ≲ ⩽ ⪅ ≶ ⋚ ⪋ ⟂ ⊨ $
≔ ≕ ⩴
Negated Relations
- $\not =$
\not =
$\gnapprox$ \gnapprox | $\ngeqslant$ \ngeqslant | $\nsubseteq$ \nsubseteq | $\precneqq$ \precneqq |
$\gneq$ \gneq | $\ngtr$ \ngtr | $\nsubseteqq$ \nsubseteqq | $\precnsim$ \precnsim |
$\gneqq$ \gneqq | $\nleq$ \nleq | $\nsucc$ \nsucc | $\subsetneq$ \subsetneq |
$\gnsim$ \gnsim | $\nleqq$ \nleqq | $\nsucceq$ \nsucceq | $\subsetneqq$ \subsetneqq |
$\gvertneqq$ \gvertneqq | $\nleqslant$ \nleqslant | $\nsupseteq$ \nsupseteq | $\succnapprox$ \succnapprox |
$\lnapprox$ \lnapprox | $\nless$ \nless | $\nsupseteqq$ \nsupseteqq | $\succneqq$ \succneqq |
$\lneq$ \lneq | $\nmid$ \nmid | $\ntriangleleft$ \ntriangleleft | $\succnsim$ \succnsim |
$\lneqq$ \lneqq | $\notin$ \notin | $\ntrianglelefteq$ \ntrianglelefteq | $\supsetneq$ \supsetneq |
$\lnsim$ \lnsim | $\notni$ \notni | $\ntriangleright$ \ntriangleright | $\supsetneqq$ \supsetneqq |
$\lvertneqq$ \lvertneqq | $\nparallel$ \nparallel | $\ntrianglerighteq$ \ntrianglerighteq | $\varsubsetneq$ \varsubsetneq |
$\ncong$ \ncong | $\nprec$ \nprec | $\nvdash$ \nvdash | $\varsubsetneqq$ \varsubsetneqq |
$\ne$ \ne | $\npreceq$ \npreceq | $\nvDash$ \nvDash | $\varsupsetneq$ \varsupsetneq |
$\neq$ \neq | $\nshortmid$ \nshortmid | $\nVDash$ \nVDash | $\varsupsetneqq$ \varsupsetneqq |
$\ngeq$ \ngeq | $\nshortparallel$ \nshortparallel | $\nVdash$ \nVdash | |
$\ngeqq$ \ngeqq | $\nsim$ \nsim | $\precnapprox$ \precnapprox |
- Direct Input: $∉ ∌ ∤ ∦ ≁ ≆ ≠ ≨ ≩ ≮ ≯ ≰ ≱ ⊀ ⊁ ⊈ ⊉ ⊊ ⊋ ⊬ ⊭ ⊮ ⊯ ⋠ ⋡ ⋦ ⋧ ⋨ ⋩ ⋬ ⋭ ⪇ ⪈ ⪉ ⪊ ⪵ ⪶ ⪹ ⪺ ⫋ ⫌$
Arrows
$\circlearrowleft$ \circlearrowleft | $\leftharpoonup$ \leftharpoonup | $\rArr$ \rArr |
$\circlearrowright$ \circlearrowright | $\leftleftarrows$ \leftleftarrows | $\rarr$ \rarr |
$\curvearrowleft$ \curvearrowleft | $\leftrightarrow$ \leftrightarrow | $\restriction$ \restriction |
$\curvearrowright$ \curvearrowright | $\Leftrightarrow$ \Leftrightarrow | $\rightarrow$ \rightarrow |
$\Darr$ \Darr | $\leftrightarrows$ \leftrightarrows | $\Rightarrow$ \Rightarrow |
$\dArr$ \dArr | $\leftrightharpoons$ \leftrightharpoons | $\rightarrowtail$ \rightarrowtail |
$\darr$ \darr | $\leftrightsquigarrow$ \leftrightsquigarrow | $\rightharpoondown$ \rightharpoondown |
$\dashleftarrow$ \dashleftarrow | $\Lleftarrow$ \Lleftarrow | $\rightharpoonup$ \rightharpoonup |
$\dashrightarrow$ \dashrightarrow | $\longleftarrow$ \longleftarrow | $\rightleftarrows$ \rightleftarrows |
$\downarrow$ \downarrow | $\Longleftarrow$ \Longleftarrow | $\rightleftharpoons$ \rightleftharpoons |
$\Downarrow$ \Downarrow | $\longleftrightarrow$ \longleftrightarrow | $\rightrightarrows$ \rightrightarrows |
$\downdownarrows$ \downdownarrows | $\Longleftrightarrow$ \Longleftrightarrow | $\rightsquigarrow$ \rightsquigarrow |
$\downharpoonleft$ \downharpoonleft | $\longmapsto$ \longmapsto | $\Rrightarrow$ \Rrightarrow |
$\downharpoonright$ \downharpoonright | $\longrightarrow$ \longrightarrow | $\Rsh$ \Rsh |
$\gets$ \gets | $\Longrightarrow$ \Longrightarrow | $\searrow$ \searrow |
$\Harr$ \Harr | $\looparrowleft$ \looparrowleft | $\swarrow$ \swarrow |
$\hArr$ \hArr | $\looparrowright$ \looparrowright | $\to$ \to |
$\harr$ \harr | $\Lrarr$ \Lrarr | $\twoheadleftarrow$ \twoheadleftarrow |
$\hookleftarrow$ \hookleftarrow | $\lrArr$ \lrArr | $\twoheadrightarrow$ \twoheadrightarrow |
$\hookrightarrow$ \hookrightarrow | $\lrarr$ \lrarr | $\Uarr$ \Uarr |
$\iff$ \iff | $\Lsh$ \Lsh | $\uArr$ \uArr |
$\impliedby$ \impliedby | $\mapsto$ \mapsto | $\uarr$ \uarr |
$\implies$ \implies | $\nearrow$ \nearrow | $\uparrow$ \uparrow |
$\Larr$ \Larr | $\nleftarrow$ \nleftarrow | $\Uparrow$ \Uparrow |
$\lArr$ \lArr | $\nLeftarrow$ \nLeftarrow | $\updownarrow$ \updownarrow |
$\larr$ \larr | $\nleftrightarrow$ \nleftrightarrow | $\Updownarrow$ \Updownarrow |
$\leadsto$ \leadsto | $\nLeftrightarrow$ \nLeftrightarrow | $\upharpoonleft$ \upharpoonleft |
$\leftarrow$ \leftarrow | $\nrightarrow$ \nrightarrow | $\upharpoonright$ \upharpoonright |
$\Leftarrow$ \Leftarrow | $\nRightarrow$ \nRightarrow | $\upuparrows$ \upuparrows |
$\leftarrowtail$ \leftarrowtail | $\nwarrow$ \nwarrow | |
$\leftharpoondown$ \leftharpoondown | $\Rarr$ \Rarr |
- Direct Input: $← ↑ → ↓ ↔ ↕ ↖ ↗ ↘ ↙ ↚ ↛ ↞ ↠ ↢ ↣ ↦ ↩ ↪ ↫ ↬ ↭ ↮ ↰ ↱↶ ↷ ↺ ↻ ↼ ↽ ↾ ↾ ↿ ⇀ ⇁ ⇂ ⇃ ⇄ ⇆ ⇇ ⇈ ⇉ ⇊ ⇋ ⇌⇍ ⇎ ⇏ ⇐ ⇑ ⇒ ⇓ ⇔ ⇕ ⇚ ⇛ ⇝ ⇠ ⇢ ⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼$ ↽
Extensible Arrows
$\xleftarrow{abc}$ \xleftarrow{abc} | $\xrightarrow[under]{over}$ \xrightarrow[under]{over} |
$\xLeftarrow{abc}$ \xLeftarrow{abc} | $\xRightarrow{abc}$ \xRightarrow{abc} |
$\xleftrightarrow{abc}$ \xleftrightarrow{abc} | $\xLeftrightarrow{abc}$ \xLeftrightarrow{abc} |
$\xhookleftarrow{abc}$ \xhookleftarrow{abc} | $\xhookrightarrow{abc}$ \xhookrightarrow{abc} |
$\xtwoheadleftarrow{abc}$ \xtwoheadleftarrow{abc} | $\xtwoheadrightarrow{abc}$ \xtwoheadrightarrow{abc} |
$\xleftharpoonup{abc}$ \xleftharpoonup{abc} | $\xrightharpoonup{abc}$ \xrightharpoonup{abc} |
$\xleftharpoondown{abc}$ \xleftharpoondown{abc} | $\xrightharpoondown{abc}$ \xrightharpoondown{abc} |
$\xleftrightharpoons{abc}$ \xleftrightharpoons{abc} | $\xrightleftharpoons{abc}$ \xrightleftharpoons{abc} |
$\xtofrom{abc}$ \xtofrom{abc} | $\xmapsto{abc}$ \xmapsto{abc} |
$\xlongequal{abc}$ \xlongequal{abc} |
- Extensible arrows all can take an optional argument in the same manner as
\xrightarrow[under]{over}
.
Special Notation
Bra-ket Notation
$\bra{\phi}$ \bra{\phi} | $\ket{\psi}$ \ket{\psi} | $\braket{\phi\VERT\psi}$ \braket{\phi|\psi} |
$\Bra{\phi}$ \Bra{\phi} | $\Ket{\psi}$ \Ket{\psi} | $\Braket{ ϕ \VERT \frac{∂^2}{∂ t^2} \VERT ψ }$ \Braket{ ϕ | \frac{∂^2}{∂ t^2} | ψ } |
Style, Color, Size, and Font
Class Assignment
\mathbin
\mathclose
\mathinner
\mathop
\mathopen
\mathord
\mathpunct
\mathrel
Color
$\color{red} F=ma$
\color{red} F=ma
Note that
\color
acts like a switch. Other color functions expect the content to be a function argument:$\textcolor{red}{F=ma}$
\textcolor{red}{F=ma}
$\textcolor{#228B22}{F=ma}$
\textcolor{#228B22}{F=ma}
$\colorbox{blue}{$F=ma$}$
\colorbox{aqua}{$F=ma$}
$\fcolorbox{red}{blue}{$F=ma$}$
\fcolorbox{red}{aqua}{$F=ma$}
Note that, as in LaTeX,
\colorbox
&\fcolorbox
renders its third argument as text, so you may want to switch back to math mode with$
as in the examples above.For color definition, KaTeX color functions will accept the standard HTML predefined color names. They will also accept an RGB argument in CSS hexadecimal style. The “#” is optional before a six-digit specification.
Font
$\mathrm{Ab0}$ \mathrm{Ab0} | $\mathbf{Ab0}$ \mathbf{Ab0} | $\mathit{Ab0}$ \mathit{Ab0} |
$\mathnormal{Ab0}$ \mathnormal{Ab0} | $\textbf{Ab0}$ \textbf{Ab0} | $\textit{Ab0}$ \textit{Ab0} |
$\textrm{Ab0}$ \textrm{Ab0} | $\bf Ab0$ \bf Ab0 | $\it Ab0$ \it Ab0 |
$\rm Ab0$ \rm Ab0 | $\bold{Ab0}$ \bold{Ab0} | $\textup{Ab0}$ \textup{Ab0} |
$\textnormal{Ab0}$ \textnormal{Ab0} | $\boldsymbol{Ab0}$ \boldsymbol{Ab} | $\Bbb{AB}$ \Bbb{AB} |
$\text{Ab0}$ \text{Ab0} | $\bm{Ab0}$ \bm{Ab0} | $\mathbb{AB}$ \mathbb{AB} |
$\mathsf{Ab0}$ \mathsf{Ab0} | $\textmd{Ab0}$ \textmd{Ab0} | $\frak{Ab0}$ \frak{Ab0} |
$\textsf{Ab0}$ \textsf{Ab0} | $\mathtt{Ab0}$ \mathtt{Ab0} | $\mathfrak{Ab0}$ \mathfrak{Ab0} |
$\sf Ab0$ \sf Ab0 | $\texttt{Ab0}$ \texttt{Ab0} | $\mathcal{AB0}$ \mathcal{AB0} |
$\tt Ab0$ \tt Ab0 | $\cal AB0$ \cal AB0 | |
$\mathscr{AB}$ \mathscr{AB} |
- One can stack font family, font weight, and font shape by using the
\textXX
versions of the font functions. So\textsf{\textbf{H}}
will produce $\textsf{\textbf{H}}$. The other versions do not stack, e.g.,\mathsf{\mathbf{H}}
will produce $\mathsf{\mathbf{H}}$. - In cases where KaTeX fonts do not have a bold glyph,
\pmb
can simulate one. For example,\pmb{\mu}
renders as : $\pmb{\mu}$
Size
$\Huge AB$ \Huge AB | $\normalsize AB$ \normalsize AB |
$\huge AB$ \huge AB | $\small AB$ \small AB |
$\LARGE AB$ \LARGE AB | $\footnotesize AB$ \footnotesize AB |
$\Large AB$ \Large AB | $\scriptsize AB$ \scriptsize AB |
$\large AB$ \large AB | $\tiny AB$ \tiny AB |
Style
$\displaystyle\sum_{i=1}^n$ \displaystyle\sum_{i=1}^n |
$\textstyle\sum_{i=1}^n$ \textstyle\sum_{i=1}^n |
$\scriptstyle x$ \scriptstyle x (The size of a first sub/superscript) |
$\scriptscriptstyle x$ \scriptscriptstyle x (The size of subsequent sub/superscripts) |
$\lim\limits_x$ \lim\limits_x |
$\lim\nolimits_x$ \lim\nolimits_x |
$\verb!x^2!$ \verb!x^2! |
\text{...}
will accept nested$...$
fragments and render them in math mode.
Symbols and Punctuation
% comment | $\dots$ \dots | $\KaTeX$ \KaTeX |
$%$ \% | $\cdots$ \cdots | $\LaTeX$ \LaTeX |
$#$ \# | $\ddots$ \ddots | $\TeX$ \TeX |
$&$ \& | $\ldots$ \ldots | $\nabla$ \nabla |
$_$ \_ | $\vdots$ \vdots | $\infty$ \infty |
$\text{\textunderscore}$ \text{\textunderscore} | $\dotsb$ \dotsb | $\infin$ \infin |
$\text{–}$ \text{--} | $\dotsc$ \dotsc | $\checkmark$ \checkmark |
$\text{\textendash}$ \text{\textendash} | $\dotsi$ \dotsi | $\dag$ \dag |
$\text{—}$ \text{---} | $\dotsm$ \dotsm | $\dagger$ \dagger |
$\text{\textemdash}$ \text{\textemdash} | $\dotso$ \dotso | $\text{\textdagger}$ \text{\textdagger} |
$\text{\textasciitilde}$ \text{\textasciitilde} | $\sdot$ \sdot | $\ddag$ \ddag |
$\text{\textasciicircum}$ \text{\textasciicircum} | $\mathellipsis$ \mathellipsis | $\ddagger$ \ddagger |
$$ <code> | $\text{\textellipsis}$ \text{\textellipsis} | $\text{\textdaggerdbl}$ \text{\textdaggerdbl} |
$\text{\textquoteleft}$ text{\textquoteleft} | $\Box$ \Box | $\Dagger$ \Dagger |
$\lq$ \lq | $\square$ \square | $\angle$ \angle |
$\text{\textquoteright}$ \text{\textquoteright} | $\blacksquare$ \blacksquare | $\measuredangle$ \measuredangle |
$\rq$ \rq | $\triangle$ \triangle | $\sphericalangle$ \sphericalangle |
$\text{\textquotedblleft}$ \text{\textquotedblleft} | $\triangledown$ \triangledown | $\top$ \top |
$"$ " | $\triangleleft$ \triangleleft | $\bot$ \bot |
$\text{\textquotedblright}$ \text{\textquotedblright} | $\triangleright$ \triangleright | $$$ \$ |
$\colon$ \colon | $\bigtriangledown$ \bigtriangledown | $\text{\textdollar}$ \text{\textdollar} |
$\backprime$ \backprime | $\bigtriangleup$ \bigtriangleup | $\pounds$ \pounds |
$\prime$ \prime | $\blacktriangle$ \blacktriangle | $\mathsterling$ \mathsterling |
$\text{\textless}$ \text{\textless} | $\blacktriangledown$ \blacktriangledown | $\text{\textsterling}$ \text{\textsterling} |
$\text{\textgreater}$ \text{\textgreater} | $\blacktriangleleft$ \blacktriangleleft | $\yen$ \yen |
$\text{\textbar}$ \text{\textbar} | $\blacktriangleright$ \blacktriangleright | $\surd$ \surd |
$\text{\textbardbl}$ \text{\textbardbl} | $\diamond$ \diamond | $\degree$ \degree |
$\text{\textbraceleft}$ \text{\textbraceleft} | $\Diamond$ \Diamond | $\text{\textdegree}$ \text{\textdegree} |
$\text{\textbraceright}$ \text{\textbraceright} | $\lozenge$ \lozenge | $\mho$ \mho |
$\text{\textbackslash}$ \text{\textbackslash} | $\blacklozenge$ \blacklozenge | $\diagdown$ \diagdown |
$\text{\P}$ \text{\P} or \P | $\star$ \star | $\diagup$ \diagup |
$\text{\S}$ \text{\S} or \S | $\bigstar$ \bigstar | $\flat$ \flat |
$\text{\sect}$ \text{\sect} | $\clubsuit$ \clubsuit | $\natural$ \natural |
$\copyright$ \copyright | $\clubs$ \clubs | $\sharp$ \sharp |
$\circledR$ \circledR | $\diamondsuit$ \diamondsuit | $\heartsuit$ \heartsuit |
$\text{\textregistered}$ \text{\textregistered} | $\diamonds$ \diamonds | $\hearts$ \hearts |
$\circledS$ \circledS | $\spadesuit$ \spadesuit | $\spades$ \spades |
$\text{\textcircled a}$ \text{\textcircled a} | $\maltese$ \maltese | $\minuso$ \minuso |
- Direct Input: § ¶ $ £ ¥ ∇ ∞ · ∠ ∡ ∢ ♠ ♡ ♢ ♣ ♭ ♮ ♯ ✓ … ⋮ ⋯ ⋱ !$ ‼ ⦵